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Abstract
Acute respiratory distress syndrome (ARDS) remains to 
pose a high morbidity and mortality without any targeted 
therapies. Sedation, usually given intravenously, is an 
important part of clinical practice in intensive care unit 
(ICU), and the effect of sedatives on patients’ outcomes 
has been studied intensively. Although volatile anesthetics 
are not routine sedatives in ICU, preclinical and clinical 
studies suggested their potential benefit in pulmonary 
pathophysiology. This review will summarize the current 
knowledge of ARDS and the role of volatile anesthetic 
sedation in this setting from both clinical and mechanistic 
standpoints. In addition, we will review the infrastructure to 
use volatile anesthetics. 

cm H2O (‘Berlin definition’) [4]. Left atrial hypertension 
was no longer included because the usage of pulmonary 
artery catheters had been declining and ARDS could 
co-exist with high left atrial pressure. However, it was 
clearly stated that hydrostastic edema could not be the 
primary cause of ARDS. If risk factors were not identified 
for ARDS, this new definition mandated to exclude 
hydrostatic edema as a cause of respiratory failure. The 
risk factors for ARDS are listed in [5,6]. Among them, 
pneumonia (59.4%), extrapulmonary sepsis (16.0%) and 
aspiration (14.2%) were the major risk factors of ARDS 
in the recent study [7]. ARDS was categorized based on 
the degree of hypoxemia as follows; mild - PaO2/FiO2 
200-300 mmHg, moderate- PaO2/FiO2 101-200 mmHg, 
and severe - PaO2/FiO2 <= 100 mmHg.

In an international study involving 50 countries, 
ARDS, diagnosed using the Berlin definition, was 
observed in 10% of all the patients who admitted to 
ICU and in 23% of mechanically ventilated patients [7]. 
The estimated annual incidence of ARDS using data 
from 1999 to 2000 was 190,600 cases in the U.S. (Of 
note, in this study, onset criteria and PEEP requirement 
mandated in the Berlin definition was not used for ARDS 
diagnosis) [8]. The mortality of patients with severe 
ARDS was extremely high (46%) in the aforementioned 
international study [7]. This result was consistent with 
the mortality of Berlin definition validation cohort 
(mortality of mild, moderate and severe ARDS was 27%, 
32% and 45%, respectively) [4]. Many of patients with 
ARDS also develop non-pulmonary organ failure [6]. 
Survivors may suffer from neuromuscular dysfunction 
(neuropathy, myopathy), neurocognitive dysfunction 
(abnormality in memory, attention, concentration), and 
neuropsychological dysfunction (depression, anxiety), 
which could leave long-term consequences [8]. Thus, 
reducing the incidence and attenuating the disease 
progression is warranted [9].

Current Status of Acute Respiratory Distress 
Syndrome

The respiratory-distress syndrome of tachypnea, 
refractory hypoxemia, and diffuse opacities on Chest 
X-ray was first described in 1967 [1]. This was later 
called acute respiratory distress syndrome (ARDS), and 
its diagnosis criteria was defined in 1994 by the North 
American European Consensus Conference (NAECC), as 
1) Acute and sudden onset of severe respiratory distress, 
2) Bilateral infiltrates on Chest X-ray, 3) The absence of 
left atrial hypertension, and 4) Severe hypoxemia (PaO2/
FiO2 <= 200 mmHg) [2]. Flooding of the distal airspaces 
with protein-rich edema fluid is largely responsible for 
hypoxemia [3]. The term “Acute lung injury (ALI)” was 
defined as an entity that meets 1) – 3) above and has less 
severe hypoxemia (PaO2/FiO2 <= 300 mmHg). However, 
a number of issues were raised regarding the NAECC 
definition. The ARDS Definition Task Force redefined 
ARDS in 2012 (as follows) and the term ‘ALI’ was 
eliminated; 1) Onset within 7 days after a known clinical 
insult or new or worsening respiratory symptoms, 
2) Bilateral opacities on chest radiograph, and 3) 
Hypoxemia (PaO2/FiO2 <= 300 mmHg) in the presence of 
a minimum positive end-expiratory pressure (PEEP) of 5 



• Page 28 •Transl Perioper & Pain Med 2019; 6 (2)

DOI: 10.31480/2330-4871/084

and improve patient-ventilator synchrony [16]. Inade-
quate sedation can cause agitation, accidental extuba-
tion, or hemodynamic instability. With the introduction 
of electronic flow triggering [24], synchronization be-
came a less important indication. Because of adverse 
effects on clinical outcomes posed by stress and anxiety 
[25], judicious  sedation was often provided to mitigate 
exposure to psychological disturbance [26].

As a result, over-sedation was commonly observed 
(40-60% of patients) [16,27,28]. The contribution of 
over-sedation to adverse outcomes was pointed out 
by a number of studies [29-32]. The depth of sedation 
was independently associated with the duration of 
mechanical ventilation (MV), in-hospital mortality, 
and rate of death [27,31,33,34]. Surprisingly, lighter 
sedation was not associated with psychological 
adverse outcomes [35-37]. In addition, delirium was 
less frequent under lighter sedation [16]. Although 
not all, a significant portion of patients examined in 
these studies had ARDS [29-32], suggesting that these 
results were relevant to patients with ARDS [16]. The 
2018 Pain, Agitation/sedation, Delirium, Immobility 
(rehabilitation/mobilization), and Sleep (disruption) 
(PADIS) guideline recommends light sedation over deep 
sedation for ICU patients [38]. Although patients with 
severe ARDS are often ventilated with low tidal volume 
and high PEEP, deep sedation is not necessarily required 
for this purpose [39-43]. However, deep sedation is 
required for patients on neuromuscular blockade, and 
possibly for prone position and ECMO use [44-46]. 

The majority of sedatives and analgesics are given 
intravenously [47]. Midazolam, lorazepam, diazepam, 
dexmedetomidine, ketamine, remifentanil, fentanyl, 
morphine and hydromorphone are the mainstay for 
sedation. Benzodiazepines and propofol are used in 60% 
and 20% of cases, respectively [27]. Because sedatives 
are often given continuously, the context-sensitive half-
time (CSHT) rather than the terminal elimination half-
lifeis proposed as a more clinically relevant measure 
[48]. The CSHT describes the time required for the 
plasma drug concentration to decline by 50% after 
terminating an infusion. It depends on both distribution 
and metabolism of a given drug,and predicts recovery 
from infusion more accurately [49]. Decreased hepatic 
and renal blood flow leads to change in metabolism and 
clearance [50]. CSHT usually increases as the duration 
of infusion goes longer. Midazolam, lorazepam, 
diazepam, propofol, ketamine, fentanyl, morphine and 
hydromorphone, for example, can have longer CSHTs 
due to slow metabolism and clearance in critically ill 
patients. Remifentanil, metabolized by plasma and tissue 
esterases has an extremely short CSHT (2.45 min after 
3-hour infusion [48]), but can cause acute development 
of withdrawal and tolerance [51]. Dexmedetomidine 
with CSHT of one hour [52] is increasingly in use. 

However, currently there is no specific therapy 
against ARDS. The mainstay of ARDS management is 
to identify and treat the underlying causes of ARDS. 
For example, treatment for pneumonia should be the 
priority if this is an inciting disease. For ARDS itself, 
supportive management is used to limit further lung 
injury. Supportive management associated with the 
improvement of ARDS outcome includes limiting of tidal 
volume and plateau pressure, use of neuromuscular 
blockade, use of prone position and conservative fluid 
administration [10-13]. Some of the groundbreaking 
work are introduced here; In a groundbreaking trial 
comparing low-tidal volume (6 mL/Kg) versus high tidal 
volume (12 mL/Kg) ventilation testing all the severity of 
ARDS patients, the mortality during the first 180 days 
was 31.0% in the low tidal volume group and 39.8% in 
the high tidal volume group [10]. Using conservative 
fluid administration over liberal fluid administration to 
this population shortened the duration of mechanical 
ventilation, but did not show survival benefit [13]. 
Prone position and neuromuscular blockade was tested 
in moderate-to-severe ARDS (PaO2/FiO2 < 150 mmHg). 
Patients with only deep sedation group (control group) 
were compared with patients with deep sedation 
who received cis-atracurium for 48 hours (muscle 
relaxant group) [12]. The 28-day mortality was 23.7% 
in the muscle relaxant group and 33.3% in the control 
group, and the 90-day mortality was 31.6% and 40.7%, 
respectively. The 28-day mortality was 16.0% in the 
prone group and 32.8% in the supine group, and the 
90-day mortality was 23.6% in the prone group and 
41.0% in the supine group [11]. The American Thoracic 
Society, European Society of Intensive Care Medicine 
and Society of Critical Care Medicine proposed clinical 
practice guideline for mechanical ventilation based on 
a number of clinical trials [14]. In addition, sedation 
regimen and neuromuscular blockade have been 
reviewed and their clinical guideline was suggested [15-
17]. Current recommendation for ARDS management is 
summarized.

A number of pharmacological interventions for 
ARDS have been attempted without success [18]. While 
the development of specific pharmacological therapy 
is necessary and continues to be explored, a body of 
research has suggested that sedative choice, particularly 
use of non-authentic sedative volatile anesthetics could 
benefit the outcome of ARDS [19-23]. Here we will 
review the current knowledge of sedatives in ARDS and 
the role of volatile anesthetics.

Volatile Anesthetics as Sedatives in Patients 
with ARDS

The goal of sedation and its role in the outcome
In patients with ARDS, sedation is used to improve 

tolerance of mechanical ventilation, reduce discomfort, 
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et al. suggested that VA might offer direct benefit to 
pulmonary function. They prospectively compared 
PaO2/FiO2 of ARDS patients who received sevoflurane 
(mean 0.6-0.7%) or midazolam sedation for 48 hours 
[22], and found that sevoflurane arm showed higher 
PaO2/FiO2.

With the limited number of studies available in ICU 
settings, the studies in operating room settings can 
present additional insight. In the meta-analysis by Uhlig, 
et al., general anesthesia with VAs was associated with 
reduced mortality and lower incidence of pulmonary 
complications over intravenous anesthetics (IAs) after 
cardiac surgery [67]. The outcome did not differ between 
the two groups undergoing non-cardiac surgery, but 
this may be due to significant heterogeneity in cases 
enrolled. In the prospective study by Grabitz, et al., 
higher VA doses were associated with less pulmonary 
complications, lower 30-day mortality and lower cost in 
non-cardiac surgeries [68]. Higher doses were beneficial 
only in patients without prolonged intraoperative 
hypotension, suggesting tissue injury via impaired 
perfusion needs to be avoided. In the prospective study 
by De Conno, et al. sevoflurane anesthesia showed 
lower pro-inflammatory mediator levels along with 
less postoperative (mostly lung related) complications 
than propofol anesthesia in surgery requiring one-
lung ventilation [69]. One-lung ventilation and use of 
hyperoxia involves a number of physiological changes, 
and the data need to be interpreted with caution. The 
effect of different VAs and doses should be examined 
in diverse patient population in the future. Additional 
feature of VAs is that it can induce muscle relaxation. 
In severe ARDS, muscle relaxation can be used as 
mentioned above. Thus, the property of muscle 
relaxation by VAs potentially work in favor.

Mechanism of volatile anesthetics-induced 
modulation of ARDS

The findings that VAs might work favorably for lung 
pathophysiology including ARDS are exciting, but it is 
important to understand the underlying mechanism. 
At the alveolar level, oxygen and carbon dioxide need 
to diffuse efficiently across the alveolar-capillary 
membrane. As the lung as a whole, alveolar ventilation 
(V) and pulmonary circulation (Q) needs to be matched. 
In healthy volunteers, VAs worsen V/Q matching [70], 
which does not explain the aforementioned favorable 
pulmonary effects. Of note, similar study has not been 
done using IAs or patients with lung injury. The carbon 
monoxide diffusion capacity (DLco) is the most sensitive 
measurement of alveolar-capillary gas transfer [71]. This 
has not been tested in human subjects under different 
sedatives. Its measurement in rodents is possible [72], 
but has not been done under different sedatives. In 
general, the mechanism was limitedly analyzed in 

Protocol-directed sedation protocol, daily interruption 
of continuous sedation, and spontaneous breathing trial 
have been used with good effect and recommended in 
the PADIS guideline [29,31,38,53]. Validated sedation 
scales and protocols should be used to titrate sedation 
[49].

The PADIS guideline also described preference of 
propofol or dexmedetomidine over benzodiazepines 
[38]. Benzodiazepine was associated with an increased 
mortality over propofol or dexmedetomidine [54]. 

The ideal sedative should have a rapid onset and 
offset of action, and allow precise titration of sedation 
without accumulation after long-term use [55]. However, 
currently intravenous sedatives do not meet these 
criteria perfectly. As alternatives, volatile anesthetics 
(VAs) have been introduced as sedatives in ICU in 
Europe and Canada [56], and some countries list them 
as alternative sedatives in the sedation guideline [57]. 
Currently they are not in a part of the PADIS guideline. 
Isoflurane, sevoflurane and desflurane are commonly 
used VAs. They are promiscuous, small molecules that 
interact with several receptors in the central nervous 
system such as GABAA receptor, N-methyl-D-asparate 
(NMDA) receptor and tandem pore domain potassium 
channel (K2P). Their CSHTs are comparable and do not 
increase with the duration of administration (CSHT 
of < 10 min) [58]. In the meta-analysis, VA sedation 
did not increase short-term adverse events, and was 
associated with a reduction in time to extubation [59]. 
The majority of reports are based on short-term use, 
and the assessment of long-term use is in progress.

Benefits of volatile anesthetics in ARDS settings
As mentioned above, VAs have favorable CSHT 

profile. So far there is no study examining the effect of 
VAs on delirium in ICU setting. Isoflurane, sevoflurane 
and desflurane demonstrated a trend in the reduction 
of post extubation agitation, delusion, negative feelings 
and factual ICU memory over midazolam or propofol 
sedation in some studies [60-62].

VAs may have favorable features on non-sedative 
aspects including lung pathology. The retrospective 
study by Bellgardt, et al. examined the mortality of 
patients on ventilator under isoflurane or propofol/
midazolam [63]. Isoflurane arm (0.3-0.8%) had a 
significantly lower mortality than propofol/midazolam 
arm. Isoflurane arm also had shorter ventilator-support, 
in line with other studies that VA group experienced 
earlier extubation (sevoflurane 0.5-1.0%, isoflurane 
0.1-0.6%) [60,64-66]. Early extubation may potentially 
reduce ventilator-associated complications such as 
atelectasis, volutrauma and pneumonia. The effect of 
sedation onpulmonary function such as gas exchange 
was not examined in this study. The study by Jabaudon, 
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extracellular traps (NETs) are net-like chromatin fibers 
decorated with neutrophil-derived components such 
as histones, myeloperoxidase (MPO) and NE. Histones 
and MPO are also cytotoxic to epithelial and endothelial 
cells. The involvement of NETs in lung injury has been 
shown [76]. The increased permeability of the alveo-
lar-capillary barrier [76] and the impaired fluid clearance 
are responsible for early lung injury as described above. 
Fluid clearance is controlled by epithelial Na+ and Cl- ion 
transport (Figure 1). Na+ transport is largely undertaken 
by the Na+/K+-ATPase and the epithelial sodium chan-
nel (ENaC). Increased transforming growth factor (TG-
F)-β levels are observed in lung fluids from patients with 
ALI/ARDS [77,78]. Alveolar epithelial-restricted integrin 
αvβ6 activates TGF-β, stored at high concentrations in 
the extracellular matrix [79]. TGF-β1 acts as a neutrophil 
chemoattractant, and increases neutrophil respiratory 
burst, phagocytosis and survival [80]. It also facilitates 
internalization of ENac, leading to alveolar flooding 
[74,81]. TGF-β also directly increases the permeability 
of pulmonary endothelial monolayers and alveolar ep-
ithelial monolayers [81]. TGF-β also induces the genes 
expressing the extracellular matrix and inhibits metal-
loprotease to seal off inflammation and facilitate tissue 
repair. The receptor for advanced glycation end-prod-
ucts (RAGE) is a membrane receptor in AT-1 epithelial 
cells [82]. RAGE is highly expressed in lung, and plays a 
significant role in pulmonary homeostasis, particularly 
cell spreading and growth. AT-1 cells occupy 95% of the 
lung epithelial cells, while AT-2 cells occupy 5%. RAGE is 
a pro-inflammatory molecule and increases its expres-

clinical studies. Preclinical studies are insightful to 
address the mechanism of lung injury and the effect of 
different sedatives. Thus, we will go over the molecular 
mechanism of ARDS and the proposed mechanism of 
VA-induced ARDS modulation illustrated in preclinical 
studies in the followings.

Lung injury in ARDS

ARDS can be categorized into three phases (acute, 
subacute, and chronic) [73]. In the acute phase, 
interstitial and alveolar edema with accumulation of 
neutrophils, macrophages, and red blood cells in the 
alveoli is seen. Often denuded alveolar epitheliums 
and hyaline membranes are observed. As a result of 
tissue injury, lung develops significant permeability. 
Non-cardiogenic pulmonary edema is a signature of 
ARDS, and develops because of an increase in fluid 
influx from the vasculature into the alveolar airspaces, 
and a reduction in normal capacity of the alveolar 
epithelium to remove edema fluid from the airspaces 
(alveolar fluid clearance) [3,74]. In the subacute phase, 
some of the edema is reabsorbed with sign of repair 
including proliferation of alveolar epithelial type (AT) II 
cells. In the chronic phase, there is a resolution of the 
acute neutrophilic infiltrate and fibrosis with ongoing 
evidence of alveolar epithelial repair.

Activated neutrophils release neutrophil elastase 
(NE). NE is a serine proteinase stored in azurophilic 
granules, and cleaves key endothelial cell-associated ad-
hesion molecules to cause lung damage [75]. Neutrophil 
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[105-107]. In addition, VAs can reduce proinflammatory 
levels. Sevoflurane exposure attenuated production of 
proinflammatory mediators in bronchoalveolar lavage 
(BAL) fluid [108]. This is in line with the study of patients 
with one-lung ventilation that VAs reduced alveolar in-
flammatory response, but propofol did not [109].

In addition to the effect of VAs on neutrophils, they 
affect alveolar epithelial cells. Isoflurane attenuated 
proinflammatory response by alveolar epithelial cells 
via atypical type A γ-aminobutyric acid receptors (GAB-
AA receptors) [110]. Similarly, halothane and enflurane 
reduced proinflammatory response [111]. Sevoflurane 
also attenuated proinflamatory response and attenuat-
ed apoptosis of epithelial cells [112]. Sevoflurane might 
enhance the function of ENaC and Na+/K+-ATPase on 
epithelial cells to mitigate pulmonary edema [23]. The 
benefit of VAs in lung injury was confirmed in another 
model. In post-hemorrhagic shock model, lung injury 
was attenuated by isoflurane over pentobarbital [21].

Isoflurane and sevoflurane also worked beneficially 
during MV. In primary VILI model, sevoflurane and iso-
flurane attenuated neutrophil recruitment, activation 
and VILI more over ketamine and desflurane anesthe-
sia [113]. In another study, sevoflurane exposure during 
MV was associated with less oxidative burst and lower 
proinflammatory mediator levels in BAL [114]. Desflu-
rane may not be as potent as isoflurane and sevoflu-
rane, but further investigation is warranted to conclude. 
Isoflurane exposure attenuated VILI by inhibiting phos-
phoinositide 3-kinase (PI3K)/Akt signaling [20]. The inhi-
bition of PI3K/Akt signal exacerbates lung alveolar per-
meability and inflammation [115]. In the two hit model 
of LPS induced lung injury followed by MV, isoflurane 
and desflurane exposure maintained the integrity of the 
alveolar-capillary barrier [19]. So far the effect of VAs 
on RAGE and TGF-β has not been reported. We should 
also keep in mind that the preclinical studies were large-
ly performed using sterile inflammation model [105]. A 
growing literature suggests that VAs pose immunomod-
ulatory effects [98,99]. In fact, prolonged exposure to 
isoflurane can cause neutrophil dysfunction, worsen 
bacterial loads and outcomes in the setting of sepsis 
[105]. Because patients with ARDS could have impaired 
immune function, this potential immunomodulatory ef-
fects by VAs should be kept in mind when VAs will be 
used for patients with sepsis for a long duration.

Practical aspect of volatile anesthesia usage in ICU 
setting

In general, VAs at one-third of doses for general an-
esthesia would be adequate to achieve sedation [116]. 
This is illustrated in the studies cited above [22,60,63-
66]. However, VAs at much higher concentrations are 
required when deeper sedation is indicated [116]. VAs 
are mainstay drugs for general anesthesia in the operat-

sion in inflammation. Soluble RAGE, produced by alter-
native splicing or truncation of membrane RAGE, acts 
as a decoy to bind to its ligands and attenuate further 
inflammation [83]. High-mobility group box 1 (HMGB1) 
is a non-histone chromatin-associated protein actively 
secreted or passively released from necrotic or injured 
cells, and serves as a ligand for RAGE [84]. HMGB-1-
RAGE axis activates TGF-β via integrin αvβ6. RAGE is 
also expressed on neutrophils, and HMGB1 recruits 
neutrophils to the site of necrosis [85].

MV is an indispensable component of advanced life 
support, but it can damage the lung (ventilator-induced 
lung injury; VILI). VILI is caused by overdistension at 
high lung volumes (volutrauma), collapse/reopening 
of airway units at low lung volumes (atelectrauma) 
and activation of immune system (biotrauma) [86]. 
Volutrauma and atelectrauma represent mechanical 
trauma. Atelectrauma causes perforation in the 
airspaces and volutrauma enhance it [87], because 
atelectatic lesion poses lung at an increased risk of local 
strain for inflation [88]. Cyclic stretch of lung induces 
the inflammatory reaction and can affect systemic 
circulation and distal end-organs [89]. Cytokine 
production, neutrophil activation and subsequent tissue 
injury constitute biotrauma [90]. Neutrophil depletion 
attenuated VILI in rabbits [91]. Blocking interleukin (IL)-1 
led to inhibition of neutrophil recruitment and less lung 
injury [92]. Neutrophils can cause VILI via NETosis [93] 
and release of NE [94]. The involvement of HMGB-1-
RAGE [95,96] and TGF-β [97] in VILI has been described 
as above.

The mechanism of volatile anesthetics-induced 
reduction in lung injury

A growing evidence indicates the immunomodulato-
ry effects of VAs [98,99]. The role of VAs in lung patho-
physiology was tested mostly in lipopolysaccharide 
(LPS)-induced lung injury models. Exposure of isoflu-
rane before and after LPS instillation reduced neutrophil 
recruitmentand lung injury [100,101]. A number of pre-
clinical studies identified neutrophils as central, cellular 
mediators of the early, innate immune response, caus-
ing damage to the lung [102]. Abundant accumulation 
of neutrophils has been seen in lung in patients with 
ARDS [103]. Thus, the modulation of neutrophil function 
by isoflurane could play a role in lung injury reduction. 
Similarly, sevoflurane exposure was associated with less 
lung injury and better oxygenation than propofol [104]. 
The effect of VAs on neutrophil function including neu-
trophil recruitment has been described in vivo. In the 
study of sepsis model, isoflurane attenuated neutrophil 
recruitment but propofol did not [105]. Neutrophils 
are recruited to organs and tissues via chemoattrac-
tants and adhesion molecules. Isoflurane and sevoflu-
rane directly inhibit the function of adhesion molecules 
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[119,120]. Both are not available in the US. VAs have 
been given patients with status asthmaticus and sta-
tus epilepticus by anesthesia machine in ICU in the US 
[116,121,122].

The potential problem of VAs should be noted. 
Malignant hyperthermia can be triggered with the use 
of VAs. One case has been reported in ICU use [123]. 
This is quite rare with the incidence of 1: 5,000-1:50,000-
100,000 [124,125]. In contrast, propofol infusion can be 
more frequently seen (about 1:100) [126]. In addition, 
environmental aspect needs to be considered. The 
effect of VAs on global warming potentials has been 
reported. Desflurane accounts for the largest life 
cycle greenhouse gas emissions among all the VAs 
with 15 times that of isoflurane and 20 times that of 
sevoflurane [127]. Due to this concern and the potential 
weaker lung protective property shown in a preclinical 
study, desflurane may not be the priority drug for ICU 
use in patients with ARDS. Lastly, VA administration is 
currently only trained during anesthesia training. Thus, 
the presence and/or immediate availability of a board 
certified anesthesiologist should be also taken into 
consideration when VAs are needed to administered to 
a patient for sedation.

Future Direction
Although VAs showed favorable profiles in preclinical 

and clinical studies, larger clinical studies need to be 
performed to potentially facilitate VA-based sedation in 
ICU setting to determine its safety and benefit. Preclinical 
studies should also supplement further knowledge. 

ing rooms and administered via vaporizers mounted on 
anesthesia machines with circular circuits. Because ICU 
ventilators uses high-flow, non-rebreathing, non-circu-
lar circuits, the vaporizers mounted on anesthesia ma-
chine are not adequate for use. The development of 
miniature vaporizers such as the Anesthesia Conserving 
Device (AnaConDa) [117] or MIRUS system simplified 
the use of VAs on ICU ventilators (Figure 2A and Figure 
2B) [118]. A couple of technical issues should be not-
ed. The AnaConDa or MIRUS system is typically placed 
between the Y-piece and the patient (Figure 2C). Ana-
ConDa can accommodate isoflurane, sevoflurane, but 
not desflurane. The large dead space (100 mL) limits its 
pediatric use. Some advocate placing this in the inspira-
tory limb to use in children with cost of no recycling of 
VAs. 90% of VAs are absorbed on the activated carbon 
fibers during expiration and recycled back to patients, 
but 10% of the vaporized gas require scavenging by in-
corporating an active or passive scavenging system to 
the expiratory outlet of the ventilator [116]. For passive 
gas adsorption, charcoal canisters are used. For active 
gas adsorption, waste gases are siphoned to the main 
hospital waste gas outlet system. The association of 
high atmospheric VA levels with infertility and sponta-
neous abortions led to the recommendation that occu-
pational atmospheric levels should be maintained be-
low less than 2 parts per million (ppm) in North America 
[116]. Monitoring VA concentration in ICU environment 
using infrared spectroscopy should be performed to 
ensure that VA level in ICU is below the recommended 
range. The MIRUS system is compatible with desflurane 
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