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The CRISPR/Cas9 system for gene editing and its potential 
application in pain research

Abstract

The CRISPR/Cas9 system is a research hotspot in ge-
nome editing and regulation. Currently, it is used in 
genomic silencing and knock-in experiments as well 
as transcriptional activation and repression. This versa-
tile system consists of two components: a guide RNA 
(gRNA) and a Cas9 nuclease. Recognition of a genom-
ic DNA target is mediated through base pairing with 
a 20-base gRNA. The latter further recruits the Cas9 
endonuclease protein to the target site and creates dou-
ble-stranded breaks in the target DNA. Compared with 
traditional genome editing directed by DNA-binding 
protein domains, this short RNA-directed Cas9 endo-
nuclease system is simple and easily programmable. 
Although this system may have off-target effects and in 
vivo delivery and immune challenges, researchers have 
employed this system in vivo to establish disease mod-
els, study specific gene functions under certain disease 
conditions, and correct genomic information for disease 
treatment. In regards to pain research, the CRISPR/
Cas9 system may act as a novel tool in gene correction 
therapy for pain-associated hereditary diseases and may 
be a new approach for RNA-guided transcriptional ac-
tivation or repression of pain-related genes. In addition, 
this system is also applied to loss-of-function mutations 
in pain-related genes and knockin of reporter genes or 
loxP tags at pain-related genomic loci. The CRISPR/
Cas9 system will likely be carried out widely in both 

bench work and clinical settings in the pain field.
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Introduction 

The CRISPR/Cas9 system is becoming increasing-
ly popular in the field of genomic editing and gene 
regulation. This system was developed based on the 
RNA-guided Cas9 endonuclease found in bacteria im-
mune system. CRISPR refers to clustered regularly 
interspaced short palindromic repeats, which are seg-
ments of prokaryotic DNA containing short repeats of 
base sequences. Each repetition is followed by short se-
quence of “spacer DNA” derived from previous virus 
intruder genome [1]. Subsequent transcriptions from 
the CRISPR repeat-spacer units yield two noncoding 
RNAs: one CRISPR RNA (crRNA) containing nucle-
ase guide sequences compiled from the spacers, and an-
other noncoding RNA, complementary to the repeat se-
quence, known as trans-activating crRNA (tracrRNA). 
When a virus invades the bacterium for a second time, 
this dual crRNA:tracrRNA is now capable of recogniz-
ing the viral DNA as foreign, and thus base pairs with 
the intruder DNA and recruits Cas9 endonuclease to 
create double strand DNA (dsDNA) breaks at the rec-
ognition site, ultimately this leads to silencing of the vi-
ral gene [1-3]. The CRISPR/Cas9 system is the type II 
prokaryotic immune system, which provides acquired 
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cent motif (PAM) sequence at the 5’ end [5] (Fig. 1). To 
improve the efficiency of the CRISPR/Cas9 system in 
genome editing, recent studies designed single chime-
ric guide RNA (sgRNA) molecules. These molecules 
contain a target recognition 20-base RNA sequence 
mimicking the function of crRNA, followed by a hair-
pin scaffold structure mimicking the base-pairing inter-
actions between tracrRNA and crRNA[3](Fig. 1). Once 
dsDNA breaks are achieved in the targeted gene, cells 
activate their error-prone non-homologous end joining 
repair (NHEJ) pathways to fix the damage, resulting in 
random insertion/deletion mutations (indels) of DNA 
bases at the cut site. Introduction of indels to the cod-
ing frame of the targeted gene consequently leads to 
changes in the target gene expression including genetic 
knockdown [5] (Fig. 2). If a homologous DNA template 
is provided, cells repair their DNA through homolo-
gous recombination, resulting in genomic knock-in at 
the specific cut site (Fig. 2). Thus, the CRIPSR/Cas9 
system can be used in mammalian genomic editing in-
cluding the production of knockout or knockin models. 

Genomic Editing

Disruption of a target gene is a way to decipher the 
function of a gene. As discussed above (Fig. 2), by us-
ing the CRIPSR/Cas9 system, genomic editing can be 
achieved by creating a single gRNA directed toward the 
gene of interest that will recruit a Cas9 endonuclease. 
This versatile system has been carried out to disrupt 
several genes in order to decipher their functions [6] or 
to provide a potential gene correction therapy in mam-
mals [7,8]. For example, the disruption of CDK11 was 
achieved in an osteosarcoma cell line using the CRIS-
PR/Cas9 system, resulting in decreases in cell prolif-
eration and viability [6]. The human pcsk9 (proprotein 
convertase subtilisin/kexin type 9) gene has emerged 
as a promising therapeutic target for cardiovascular 
disease, given that individuals with naturally occurring 
loss-of-function pcsk9 mutations experience reduced 
low-density lipoprotein cholesterol levels which pro-
tects against cardiovascular disease. Achieving loss of 
function mutations in the Pcsk9 gene using the CRIS-
PR/Cas9 system successfully decreased serum PCSK9 
by 90% and total cholesterol levels by 40% in a mouse 
model [7,9]. Moreover, by introducing multiple gRNAs 
simultaneously, this system could easily be adapted to 
target multiple genes at the same time. This may be im-

immunity through gaining resistance to foreign genetic 
elements [1]. By delivering the Cas9 endonuclease and 
appropriate guide RNAs into mammalian system, ge-
nome editing in mammalian cells could be efficiently 
performed.

Cas9 is an endonuclease with two enzymatic domains: 
an HNH domain that cleaves the complementary 
strand of DNA that base pairs with the guide RNA and 
an RuvC1 domain that cleaves the noncomplementa-
ry strand [4] (Fig. 1). The RNA-guided Cas9 system 
will only recognize its target sequence if that target se-
quence is immediately followed by a protospacer-adja-

Fig. 1. Single chimeric RNA-guided Cas9 endonuclease recruit-
ment for target recognition. Single chimeric guide RNA (blue) 
directs the active Cas9 endonuclease (orange) to cleave site-spe-
cific DNA when the targeted sequence (green) is immediately 
followed by a PAM sequence (red). The RuvC1 domain of Cas9 
cleaves the noncomplementary strand, and the HNH domain 
cleaves the complementary strand of DNA. The cut site usually 
occurs 3 bp upstream of the PAM sequence (red arrow).

Fig. 2. Genomic editing. Once double strand DNA breaks are 
achieved, cells activate their error-prone non homologous end 
joining (NHEJ) repair pathways to fix the damage by introducing 
random small insertions or deletions at the cut site. However, if a 
homologous DNA template is provided, cells repair their DNA by 
homologous recombination (HR), resulting in genomic knock-in 
at the specific cut site. 
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portant for studying the effects of a family of proteins 
or a pathway on behaviors. The role of DNA methyl-
ation in the development of human embryonic stem 
cells was investigated through successful co-knock-
out of the three key DNA methyltransferase enzymes, 
DNMT1, DNMT3a and DNMT3b by co-application 
of three gRNAs targeting each enzyme [10]. Commer-
cially available CRISPR gRNA libraries offer a conve-
nient approach to achieve large-scale loss-of-function-
based screening in different species. By knocking out 
thousands of genes individually using a genome-scale 
mouse CRISPR gRNA library in a non-metastatic can-
cer model, the top metastatic cancer contributors were 
dissected [11]. Another gRNA library targeting 19,150 
mouse protein-coding genes was designed to reveal 
their roles in drug resistance [12].  

The CRISPR/Cas9 system has also been used for spe-
cific gene knockin studies. As described in Figure 2, the 
cut at the locus of interest is induced by gRNA-directed 
Cas9 endonuclease. When a DNA cassette flanked by 
homology arms is provided as a donor template, the cut 
site is repaired through homologous recombination and 
the template is incorporated into the selective DNA cas-
sette [13] (Fig. 2). Since the CRISPR targeting site is 
destroyed by gene insertion, this CRISPR-Cas9 system 
is mostly carried out to enable reporter gene knockin 
for the identification and purification of specific cell 
types of interest. With the use of this system, research-
ers have successfully generated mice carrying V5 tags, 
mCherry or GFP fluorescence reporters at the 3’ ends 
of target genes or insertion of two loxP sites flanking 
an exon of a target gene [14]. Similar engineering was 
also carried out in rats to obtain reporter knockin and 
floxed alleles [15,16]. The principles established in 
these studies could directly apply to other species for 
simplifying the genome engineering process. 

Finally, the CRISPR/Cas9 system has been employed 
in transcription regulation. The gRNA-mediated re-
cruitment of a cleavage inactive form of Cas9 [dead 
Cas9 (dCas9), D10A mutant in RuvC1 domain and 
H841A mutant in HNH domain] enables the gR-
NA-dCas9 complex to harbor specific regulatory po-
sitions of a given gene, acting as a scaffold to recruit 
transcriptional regulators and interfere with transcrip-
tional elongation, RNA polymerase binding or tran-
scription factor binding, resulting in alternations in the 

expression of target genes [17]. Fusion of dCas9 with 
a transcriptional repressor domain robustly silences 
the endogenous target genes. For example, dCas9 has 
been fused to KRAB (Krüppel-associated box, a cate-
gory of repressive chromatin modifier domains) [18], 
which resulted in transcription repression (Fig. 3). In 
contrast, dCas9 can be converted into an RNA-guided 
transcription activator (dCas9-activator) when fused 
to transcriptional activation domains [19,20], as in the 
case of dCas9-VP64 (virus protein 64, tetrameric virus 
protein 16 transcription activator domain) (Fig. 4). In 
order to obtain highly specific and efficient transcrip-
tional regulation, the design of the fusion protein or 
fusion partner is key for future optimization efforts. 

Fig. 3. RNA-mediated recruitment of the dCas9- transcriptional 
repressor domain interferes with the transcription process. A 
dead Cas9 protein (grey) is fused with a transcriptional repressor 
domain (red). The transcriptional repressor (red) is then recruited 
to the target site by gRNA-dCas9 and silences the transcription 
of the target gene. The repression is most efficient if the target 
site is within a 200 bp window upstream of the transcription start 
site.

Fig. 4. Fusion of dCas9 with a transcriptional activation do-
main acts as a RNA-guided transcription activator. A dead Cas9 
protein (grey) is fused with a transcriptional activator domain 
(green). The transcriptional activator (red) is then recruited to the 
target site by gRNA-dCas9 and activates the transcription of the 
target gene. The activation is most efficient if the target site is 
within a 200 bp window upstream of the transcription start site.
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(TALE) DNA binding domain, consisting of ~ 500-700 
amino acids, and also one non-specific DNA cleavage 
domain [28-30] (Fig.5B). Based on the already deci-
phered DNA:protein binding codes [31,32], TALE 
domain now can be designed to  recognize almost any 
desired sequence. 

However, both nuclease domains in ZFN and TALEN 
systems recognize their genomic targets by amino acid 
sequence in the DNA binding domain of either zinc fin-
ger protein or TALE protein (protein-DNA interaction), 
which means the amino acid sequence of their DBD 
has to be redesigned for each target site, which can 
be a painstakingly lengthy process. In contrast, Cas9 
endonuclease-mediated dsDNA breaks only require 
co-expression of a single target-specific guide RNA. 
The specificity of ZFN and TALEN can be enhanced 
by increasing the number of zinc finger or TALE mod-
ules [33], whereas the specificity of CRISPR-Cas9 is 
dependent on a 20 bp guide RNA. Moreover, since the 
targeting specificity of ZFN and TALEN is defined 
solely by protein-DNA interactions, their off-targets are 
context-dependent and cannot be completely predicted 
based on the DNA sequence homology. On the con-
trary, CRISPR-Cas9 recognizes targets based on Wat-
son-Crick basepairing rules. Therefore, the off-target 
sites in the CRISPR-Cas9 system can be more reliably 
predicted based on sequence homology. Taken togeth-

Advantages over Other Methods

Currently, ZFN, TALEN and CRISPR/Cas9 system, 
comprise a powerful class of tools for genomic engi-
neering. Zinc finger nucleuses are artificial chime-
ric site-specific endonuclease engineered by fusing 
a zinc finger DNA-binding domain to a non-specific 
DNA-cleavage domain of the restriction endonucle-
ase FokI [21,22]. The zinc finger DNA binding domain 
consists of 3-6 zinc finger units, with each unit rec-
ognizing 3 base-pairs of DNA. Since the non-specific 
nuclease FokI only creates a dsDNA break when it di-
merizes, ZFN targets consist of two zinc-finger binding 
sites separated by a 5–7-bp spacer sequence recognized 
by the FokI cleavage domain (Fig. 5A). Once the cut 
is achieved, the NHEJ pathway takes place and results 
in loss of gene function [21,22]. However, the various 
zinc finger units when assembled in arrays interfere 
with each other, resulting in decreased efficiency in 
binding the DNA targets [23,24]. With the necessity of 
dimerization of the system, the ZFN system has acces-
sible targets approximately every 500 basepairs of ran-
dom genomic sequence [25,26], while CRISPR/Cas9 
has a targeting range of 1 in every 8 basepairs of ran-
dom genomic sequence [27]. Due to this limitation in 
the sequences recognized by ZFNs, the improved artifi-
cial nuclease TALEN, similar to ZFN, was introduced. 
TALEN is composed of one transcription-like effector 

Fig. 5. Protein-DNA interactions direct dsDNA breaks mediated through dimerized FokI nucleases in ZFN (A) and TALEN (B) 
systems. A. Each zinc finger nuclease consists of a DNA-binding domain and a non-specific DNA-cleavage domain of the restriction 
endonuclease FokI (grey). The DNA-binding domain is composed of 3-6 zinc finger units (colored), with each recognizing 3 bp of 
DNA sequence. The dsDNA cleavage requires dimerization of two FokI nuclease domains. Therefore, each ZFN target consists of 
two zinc-finger binding sites separated by a spacer sequence recognized by the FokI cleavage domain. B. TALEN is also composed 
of one DNA binding domain and one non-specific DNA cleavage domain FokI. The DNA binding domain is engineered according to 
the already deciphered DNA:protein binding codes (red, green, yellow and blue-indicated amino acid sequences). Each TALEN target 
also consists of two recognition sites separated by a spacer sequence recognized by the FokI cleavage domain, which creates a dsDNA 
break if Fok1 dimerizes.
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er, compared to the traditional genome editing tools, the 
CRISPR/Cas9 system has several advantages including 
simplicity in target design, genome-wide accessibility, 
the ability to target multiple sites in one step, and pre-
dictable off-target effects. 

Prospective applications in pain research and treat-
ments.  

Based on the characteristics of the CRIPSR/Cas9 sys-
tem in genomic editing and its advantages over tradi-
tional genomic editing strategies described above, it is 
expected that this system may have potential applica-
tions in the generation of pain-related transgenic ani-
mals, the exploration of chronic pain mechanisms, and 
the treatment of pain-associated congenital diseases.         

Genetically modified mice created using various trans-
genic technologies have been widely used in preclini-
cal pain research. Conventional or congenital genetic 
KO mice have been generated through gene targeting 
with homology recombination in embryonic stem cells 
[34]. Using this approach, researchers have studied the 
functions of a pain-related gene in vivo. However, giv-
en that the gene is deleted from conception, this model 
has several limitations. As a whole-body KO, this mod-
el lacks the ability to identify tissue-specific effects of 
gene deficiency.  Some gene KO strains die in early de-
velopmental stages and this prevents researchers from 
studying the function of these genes through adulthood. 
Moreover, knocking out a target gene during the em-
bryonic period may result in compensatory changes in 
the expression of other genes or non-specific changes 
during the development that may affect animal behav-
iors [35,36]. The generation of conditional genetic KO 
mice with spatial and temporal control of gene inactiva-
tion using the Cre-loxP system may avoid these limita-
tions. However, the fertility rate of tamoxifen-inducible 
Advillin-Cre-ERT2 recombinase mice [37] that are pres-
ently available for studying the role of individual genes 
in adult sensory neuron function is rather low (person-
al communications with Dr. John N Wood’s Lab). In 
addition, other genetically modified animals (except 
for transgenic mice) are unavailable because germ-
line-competent embryonic stem cells were achieved 
only in mice. The CRISPR/Cas9 system may overcome 
the limitations caused by these traditional transgenic 
technologies. This system is able to create both germ-

line and somatic animal models with point mutations, 
deletions and complex chromosomal rearrangements 
[38]. Indeed, recent researchers have carried out the 
easily programmable CRISPR/Cas9 system to generate 
genetically modified mouse and rat lines [14-16]. The 
principles established in these studies could directly be 
applied to pain-related genes. In addition, given that the 
CRISPR/Cas9 system is simple in target design and has 
wide genome accessibility and predictable off-target ef-
fects, genome engineering using this system could be 
less time consuming. 

Chronic pain is an unpleasant, long-term sensory and 
emotional experience that affects millions of peo-
ple worldwide. Unsatisfactory effective treatment for 
this disorder is partially due to a lack of knowledge 
concerning the molecular mechanisms that underlie 
chronic pain development and maintenance. In the 
past decades, several pathophysiological mechanisms 
have been proposed. For example, peripheral nerve in-
jury-induced abnormal ectopic firing in the neuroma 
at the injured site and dorsal root ganglion neurons is 
thought to contribute to nerve injury-induced pain hy-
persensitivity [39-42]. The occurrence of such ectopic 
firing may be related to the reduced expression of some 
voltage-gated potassium channels (Kvs) such as Kv1.2 
in DRG [43-46]. In addition, the expression of opioid 
receptors in the injured dorsal root ganglion (DRG) sig-
nificantly decreased following peripheral nerve injury. 
This decrease not only results in reduced opioid analge-
sia in neuropathic pain management, but also enhanced 
release of neurotransmitters in primary afferents which 
participates in neuropathic pain genesis [47,48]. Thus, 
rescuing the reduction in these receptors and/or chan-
nels may attenuate the development and maintenance 
of neuropathic pain [43]. Using the CRISPR/Cas9 
system, designing a sequence specific guide RNA tar-
geting the genes encoding opioid receptors and volt-
age-gated potassium channels (e.g., Kv1.2), combined 
with an RNA-guided nuclease-deficient Cas9 (dCas9) 
protein fused with transcriptional activators, could res-
cue the reductions of these pain-related genes through 
their enhanced transcription and alleviate nerve inju-
ry-induced pain hypersensitivity. Thus, the application 
of the CRISPR/Cas9 system not only further elucidates 
the mechanisms underlying chronic pain but also can 
be used as a complementary strategy for pharmacolog-
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ical drugs in the treatment of this disorder.    

        Patients with some congenital diseases display sen-
sory changes that alter their perception of pain. Cohorts 
of patients suffer from hereditary sensory and autonom-
ic neuropathies (HSAN) that result in a marked absence 
of pain sensitivity [49]. These patients lack itch sen-
sations, deep pain sensations in bones and joints and, 
most importantly, the protective reflexes induced by 
pain perception [50]. HSAN type IV is linked to muta-
tions in the gene encoding for the tropomyosin receptor 
kinase A, a nerve growth factor (NGF) receptor [51], 
whereas HSAN type V is associated with a mutation in 
the NGF gene [52]. Loss-of-function mutations in the 
SCN9A gene that encode voltage-gated sodium channel 
Nav1.7 result in congenital insensitivity to pain in hu-
mans and mice [53,54]. Gain-of-function mutations in 
the SCN9A gene result in spontaneous pain as observed 
in paroxysmal extreme pain disorder and primary ery-
thermalgia [55-57]. Gain-of-function mutations in the 
SCN10A gene that encode voltage-gated sodium chan-
nel Nav1.8 also result in painful peripheral neuropathy 
[58]. Gain-of-function mutations in the SCN11A gene 
that encodes voltage-gated sodium channel Nav1.9 
cause painful neuropathy [59-61] or insensitivity to pain 
[62,63] depending on the site and content being mutat-
ed. Therefore, the CRISPR/Cas9-meidiated homology 
directed repair systems guided by specific guide RNAs 
targeting these mutated genes may provide in vivo gene 
correction therapy for these congenital diseases.  

Future challenges in the application 

The CRISPR/Cas9 system has been used intensively in 
in vitro experiments, but its application in in vivo stud-
ies may have several challenges including off-target ef-
fects, in vivo delivery vectors, and immune responses. 

Off-target effects of the CRISPR-Cas9 system usual-
ly result from mismatches between the 20-base guide 
RNA and its target DNA sequence. Of note, multiple 
mismatches could be tolerated depending on the quan-
tity, position and base identity of mismatches. For ex-
ample, within the 20-base guide RNA, mismatches are 
less tolerated in the second half because the second 
half recognizes the seed region (6-11 bp upstream of 
PAM) in the targeted DNA sequence, leading to more 
off-target effects [3,5]. Efforts have been made to min-
imize the CRISPR-Cas9’s off-target effects. Cho et al. 

reported that, by modifying guide RNA and Cas9, the 
system could effectively discriminate on-target sites 
from off-target sites [64]. Dual crRNA-tracrRNA rather 
than single chimeric guide RNA or the use of synthet-
ic guide RNA instead of guide-RNA coding plasmids 
also help alleviate off-target effects [64]. The utility 
of single or dual Cas9 nickase could also significantly 
reduce off-target effects. In gain-of-function research, 
the utility of a mutant variant of Cas9 nickase (D10A 
in its RuvC I domain) that creates only single stranded 
breaks could significantly reduce off-target effects as 
nicked DNA tends to be repaired by high-fidelity ho-
mologous recombination [8,13,64]. In loss-of-function 
studies, implementation of dual Cas9 nickases on op-
posite DNA strands with separate guide RNAs leads to 
efficient dsDNA break formation with 50- to 1500-fold 
fewer off-target insertions or deletions [65].

The viral vectors that express the CRISPR/Cas9 system 
for in vivo delivery may have safety concerns, limit-
ed packaging capacities, and limitations in the infected 
cell types. Although adenoviral, adeno-associated viral 
(AAV), and lentiviral vectors have been applied for de-
livery of the CRISPR/Cas9 system in vivo [12,66,67], 
AAV vectors are the most promising in vivo vehicles 
because they have little immunogenic potential or en-
dogenous vector recombination [68] and a broad range 
of serotype specificity [69,70]. Additionally, the restric-
tive ~4.5 kb cargo size of AAV vectors could be over-
come by packaging of a smaller-sized Staphylococcus 
aureus Cas9 (SaCas9) orthologue instead of the 4.2 kb 
S. pyogenes Cas9 (SpCas9) nuclease [9]. Recent ad-
vances in non-viral vehicles make them potential al-
ternatives for CRISPR/Cas9 delivery. Compared with 
viral vectors, non-viral vehicles do not have viral safety 
concerns, and are generally easier to be synthesized or 
produced [71]. One such non-viral vehicle, a nanoparti-
cle named “7C1”, has been used for in vivo delivery of 
guide RNA in Cre-dependent and constitutive Cas9-ex-
pressing mice [72]. Further optimization in in vivo de-
livery vehicles will provide a potential use of the CRIS-
PR/Cas9 system in translational research.

A recent study reported that Cas9 as a foreign bacterial 
protein led to an immune response in mammals [73]. 
Upon Cas9 protein stimulation in mice, Cas9-specific 
antibody was generated and interleukin-2 secreted from 
the Cas9-primed splenocytes [73]. Therefore, further 
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